Selective Separation of Industrial Relevant Metal Ions from High TDS Water using Wafer-Enhanced Electrodeionization (WE-EDI)

Humeyra B. Ulusoy Erol¹, Cody Bossio¹, Christa N. Hestekin¹, Jamie A. Hestekin¹

¹ Ralph E. Martin Department of Chemical Engineering, University of Arkansas, Fayetteville, AR, United States.

There is a need for an efficient and economical process of ion selective separation. In hydraulic fracturing, for instance, several million gallons of water are used in a site, most of which are disposed of by deep well injection taking the water from the ecosystem and causing earthquakes. However, due to the high amount of ions in wells at fracking sites, pressure driven processes for water recovery are impossible to use. This project will demonstrate an emerging environmentally friendly Wafer Enhanced Electrodeionization (WE-EDI) technology which attempts to eliminate the shortcomings that come with normal EDI and separates effluent streams into concentrated ions and clean water. In WE-EDI, ion-exchange resins are replaced by wafers that consist of cation and anion exchange beads and a polymer binding agent. In this study, selective separation of these ion exchange wafers and the effect of electroosmotic drag on the membrane structure have been performed for various anions and cations (Na⁺, K⁺, Ca²⁺, Cl⁻) and improved selectivity and higher water recoveries have been observed while significant modeling has taken place to predict the selective separation as a strong function of the equilibrium constants between the ions and the beads.