Solvent-Thermal Induced Roughening: a Novel and Versatile Method to Prepare Superhydrophobic Membranes

Weihua Qing a, Xiaonan Shi a, Weidong Zhang b, Jianqiang Wang a, Peng Wang c, Chuyang Y. Tang a,*

a. Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong 999077

b. State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Membrane Science and Technology, Beijing University of Chemical Technology, Beijing 100029, People’s Republic of China

c. Water Desalination and Reuse Center, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia

Abstract: Surface roughness enhancement by fabrication of multi-scale nano/microstructure is an effective strategy to prepare superhydrophobic membranes. In this study, we report for the first time a novel solvent-thermal induced roughening (STIR) method to increase surface roughness on various membrane surfaces for enhanced hydrophobicity. The STIR involves the swelling of a polymer surface to create a soft shell/hard core structure under the combined action of solvent and heating, followed by a controllable surface roughening as a result of mismatched thermal expansion between the shell and the core. A polyvinylidene fluoride (PVDF) nanofibrous membrane was treated by this method. Densely-packed nanofins were formed on the nanofiber, leading to a significant increase of average roughness from 3 nm to 28 nm. The treated membrane, with an enhanced hydrophobicity (from 132.8° to 155.2°) and surface area (from 7.3 to 19.0 m2/g), showed superior anti-wetting performance to the low surface tension feed water than the pristine membrane in a membrane distillation process. We further demonstrate the versatility of the STIR method by increasing surface roughness on various forms of polymeric substrates.
The novel solvent-thermal strategy reported here opens up new directions to fabricate superhydrophobic surfaces and membranes, which can greatly benefit a wide range of applications such as membrane distillation, oil/water separation, membrane absorption and membrane catalysis.

Keywords: surface roughness enhancement, solvent-thermal treatment, superhydrophobic membrane, polyvinylidene fluoride, membrane distillation

Solvent-Thermal Induced Roughening (STIR)

![Diagram of the STIR process](image)

1. Pristine membrane
2. Solvent-thermal treatment
3. Treated membrane

- Solvent-induced surface swelling
- Thermal-induced surface roughening
- Soft-shell/Hard-core structure