469885 Developing a Predictive Form of Mosced for Nonelectrolyte Solids for Extraction and Crystallization Processes

Tuesday, November 15, 2016
Grand Ballroom B (Hilton San Francisco Union Square)
Andrew Paluch and Jeremy Phifer, Chemical, Paper, and Biomedical Engineering, Miami University, Oxford, OH

Accurate and efficient models to predict the phase-behavior of nonelectrolyte solids in a wide range of solvents are central to the design of novel separation processes. A promising design tool is the MOSCED limiting activity coefficient model which is parameterized for 133 solvents. However, before predictions may be made for a solute of interest, solute MOSCED parameters are required. For novel compounds of interest, the necessary MOSCED parameters are unavailable and sufficient reference data is likely unavailable to regress the necessary parameters.

In this study we explore the use of electronic structure calculations to generate the reference data necessary to obtain solute MOSCED parameters. Specifically, we use solvation free energies computed using the popular software packages QChem and Gaussian, which employ the SM8 and SMD solvation models, respectively. Results will be shown wherein the method is successfully applied to a wide range of compounds of biological, environmental, and industrial interests. We additionally demonstrate how the limiting activity coefficients provided by MOSCED may be used to parameterize an excess Gibbs free energy model and used to make equilibrium solubility predictions.

Extended Abstract: File Not Uploaded
See more of this Session: Poster Session: Separations Division
See more of this Group/Topical: Separations Division