467784 Enhancement of Van Der Waals Mediated Adhesion of Mosquito Leg to Fibrous Surfaces

Monday, November 14, 2016: 12:30 PM
Union Square 23 & 24 (Hilton San Francisco Union Square)
Leila Pashazanusi1,2, Noshir Pesika1,2, Nirbhay Kumar2,3, Geetha P Bansal2,4, Julie Albert1,2, Baraka S Lwoya1 and Tushar Khosla1, (1)Chemical and Biomolecular Engineering, Tulane University, New Orleans, LA, (2)Vector-Borne Infectious Diseases Research Center, New Orleans, LA, (3)Department of Tropical Medicine, Tulane Univeristy, New Orleans, LA, (4)Department of Tropical Medicine, Tulane University, New Orleans, LA

The aim of our project is to introduce a novel path that can increase the efficiency of Long Lasting Insecticidal Nets (LLINs). LLINs are one of the most effective ways to control and reduce malaria transmitted by mosquitoes. Mosquito leg consists of micro-nanostructures which can be exploited to enhance their adhesion to other surfaces. We have identified that increasing the roughness of a LLIN surface enhances the contact area and generates larger adhesion between the net surface and micro-nanostructures present in mosquito leg. This increased duration leads to a greater lethal dose of the insecticide delivered to the mosquito body. We focused our initial efforts in obtaining quantitative data for measuring force of adhesion between the mosquito leg and High Density Polyethylene (HDPE) sheets (same as LLIN material) using Atomic Force Microscope (AFM). Adhesion force between the mosquito’s leg and a flat polyethylene sheet is compared with the force generated between the mosquito’s leg and rough sheets. We create rough polymer surfaces using mechanical drilling. We repeat the experiment for different surface roughness and humidity in order to clarify relative contribution of van der Waals forces compared to capillary forces in providing adhesion of mosquito leg to the surface. We aim to establish a model understanding how mosquitoes adhere to a surface depending on their micro scale roughness.

Extended Abstract: File Not Uploaded
See more of this Session: Fundamentals of Interfacial Phenomena II
See more of this Group/Topical: Engineering Sciences and Fundamentals