451599 Modelling the Electrochemical Interface: Applications to CO2 Reduction
Whipple, D. T. & Kenis, P. J. a. Prospects of CO 2 Utilization via Direct Heteroge- neous Electrochemical Reduction. J. Phys. Chem. Lett. 1, 3451–3458 (Dec. 2010).
Graves, C., Ebbesen, S. D., Mogensen, M. & Lackner, K. S. Sustainable hydrocarbon fuels by recycling CO 2 and H 2 O with renewable or nuclear energy. Renewable and Sustainable Energy Reviews 15, 1–23 (2011).
Nørskov, J. K., Rossmeisl, J., Logadottir, A., Lindqvist, L., Kitchin, J. R., Bligaard, T. & Jónsson, H. Origin of the Overpotential for Oxygen Reduction at a Fuel-Cell Cathode. J. Phys. Chem. B 108, 17886–17892 (Nov. 2004).
Shi, C., Hansen, H. a., Lausche, A. C. & Nørskov, J. K. Trends in electrochemical CO2 reduction activity for open and close-packed metal surfaces. Phys. Chem. Chem. Phys. 16, 4720–7 (Mar. 2014).
Kuhl, K. P., Hatsukade, T., Cave, E. R., Abram, D. N., Kibsgaard, J. & Thomas, F. Electrocatalytic conversion of carbon dioxide to methane and methanol on transition metal surfaces (2014).
Chan, K., Tsai, C., Hansen, H. A. & Nørskov, J. K. Molybdenum sulfides and selenides as possible electrocatalysts for CO2 reduction. ChemCatChem 6, 1899–1905 (2014).
Chan, K. & Nørskov, J. K. Electrochemical Barriers Made Simple. J. Phys. Chem. Lett. 2663–2668 (2015).
Montoya, J. H., Shi, C., Chan, K. & Nørskov, J. K. Theoretical Insights into a CO Dimerization Mechanism in CO2 Electroreduction. The journal of physical chemistry letters 6, 2032–2037 (2015).
See more of this Group/Topical: Catalysis and Reaction Engineering Division