433927 Computational Study of the Adsorption Properties of M(bdc)(ted)0.5 (M = Ni, Zn)

Tuesday, November 10, 2015: 10:10 AM
255D (Salt Palace Convention Center)
Jorge L. Rosa-Raíces, Paul Meza-Morales and Maria Curet-Arana, Chemical Engineering, University of Puerto Rico, Mayagüez, PR

Metal-organic frameworks (MOFs) have emerged as potential alternatives for the capture and storage of CO2 from flue gas emissions.1,2  Of particular interest is M(bdc)(ted)0.5 (M = Ni or Zn; bdc = 1,4-benzenedicarboxylate; ted = triethylenediamine), as experimental and theoretical studies have shown that the Zn variant exhibits higher affinity towards CO2 than other small molecules, such as CH4, O2 and N2 when the bdc linkers are functionalized.3  While Zn(bdc)(ted)0.5 has been extensively studied4–8, neither experimental nor theoretical studies of the adsorption capacities of the Ni variant of this MOF have been reported in the literature.  In this work, a computational approach was used to shed light on the adsorption dynamics of CO2 on the M(bdc)(ted)0.5 (M = Ni, Zn) isostructures.  Adsorption isotherms were simulated with the grand canonical Monte Carlo technique.  The partial charges of the framework atoms were obtained from charge-assignment schemes based on DFT calculations9,10 and the computationally-inexpensive charge equilibration method.11,12  The simulated isotherms of Zn(bdc)(ted)0.5 were compared with experimental data available in the literature.  On the basis of agreement with the experimental isotherms, it was possible to examine the suitability of the different theoretical methods for rendering the charge distribution on the M(bdc)(ted)0.5 frameworks.


(1)      Sayari, A.; Belmabkhout, Y.; Serna-Guerrero, R. Chem. Eng. J. 2011, 171(3), 760–774.

(2)      Li, J. R.; Ma, Y.; McCarthy, M. C.; Sculley, J.; Yu, J.; Jeong, H. K.; Balbuena, P. B.; Zhou, H. C. Coord. Chem. Rev. 2011, 255(15-16), 1791–1823.

(3)      Zhao, Y.; Wu, H.; Emge, T. J.; Gong, Q.; Nijem, N.; Chabal, Y. J.; Kong, L.; Langreth, D. C.; Liu, H.; Zeng, H.; Li, J. Chem. - A Eur. J. 2011, 17, 5101–5109.

(4)      Lee, J. Y.; Olson, D. H.; Pan, L.; Emge, T. J.; Li, J. Adv. Funct. Mater. 2007, 17, 1255–1262.

(5)      Liu, J. C.; Lee, J. Y.; Pan, L.; Obermyer, R. T.; Simizu, S.; Zande, B.; Li, J.; Sankar, S. G.; Johnson, J. K. J. Phys. Chem. C 2008, 2911–2917.

(6)      Hernandez-Maldonado, a J.; Guerrero-Medina, J.; Arce-Gonzalez, V. C. J. Mater. Chem. A 2013, 1, 2343–2350.

(7)      Dybtsev, D. N.; Chun, H.; Kim, K. Angew. Chemie - Int. Ed. 2004, 43(38), 5033–5036.

(8)      Chen, Y. F.; Lee, J. Y.; Babarao, R.; Li, J.; Jiang, J. W. J. Phys. Chem. C 2010, 114(14), 6602–6609.

(9)      Hamad, S.; Balestra, S. R. G.; Bueno-Perez, R.; Calero, S.; Ruiz-Salvador, a. R. J. Solid State Chem. 2015, 223, 144–151.

(10)    Yazaydin, a O.; Snurr, R. Q.; Park, T.-H.; Koh, K.; Liu, J.; Levan, M. D.; Benin, A. I.; Jakubczak, P.; Lanuza, M.; Galloway, D. B.; Low, J. J.; Willis, R. R. J. Am. Chem. Soc. 2009, 131(51), 18198–18199.

(11)    Wilmer, C. E.; Kim, K. C.; Snurr, R. Q. J. Phys. Chem. Lett. 2012, 3(17), 2506–2511.

(12)    Wilmer, C. E.; Snurr, R. Q. Chem. Eng. J. 2011, 171 (3), 775–781.

Extended Abstract: File Uploaded
See more of this Session: Molecular Simulation of Adsorption I
See more of this Group/Topical: Separations Division