433459 Predicting Bioconversion from Physical and Chemical Characteristics of Single and Blended Lignocellulosic Biomass

Wednesday, November 11, 2015
Exhibit Hall 1 (Salt Palace Convention Center)
Amber Hoover1, Daniel Stevens1, Allison E. Ray1, Sunkyu Park2, Ingrid Hoeger2, Rachel Emerson3, Sabrina Morgan4 and Garold L. Gresham5, (1)Biofuels & Renewable Energy Technologies, Idaho National Laboratory, Idaho Falls, ID, (2)Department of Forest Biomaterials, North Carolina State University, Raleigh, NC, (3)Biofuels and Renewable Energy Technology, Idaho National Laboratory, Idaho Falls, ID, (4)Idaho National Laboratory, Idaho Falls, ID, (5)Interfacial Chemistry, Idaho National Laboratory, Idaho Falls, ID

Developing biomass blends is a new concept that allows incorporation of low-cost feedstocks into the bioenergy supply chain to decrease overall cost of feedstocks; however, quality of low-cost feedstocks can vary. Chemical composition (e.g., glucan, xylan, lignin), surface area, and elemental ash are examples of key chemical and physical characteristics of biomass that impact conversion processes. The ability to quickly and accurately determine these key quality attributes and convertibility of single biomass feedstocks (e.g., not blended) for biochemical conversion processes is important for understanding how blended feedstocks will perform and to determine value of biomass on the basis of quality in addition to quantity. This project aims to develop a conversion model using single feedstocks to predict convertibility of dilute-acid pretreated biomass from physical and chemical characteristics of biomass and further apply the model to blended feedstocks. Feedstocks will include corn stover, switchgrass, Miscanthus, lawn clippings, sorghum, wheat straw, non-recyclable paper, and blends of these materials. Their physical and chemical characteristics, such as composition, surface area, porosity, cellulose crystalline structure, and elemental ash, are measured and used to predict the corresponding sugar yields from a bench-scale, dilute-acid pretreatment and enzymatic hydrolysis. The model generated will be used to (1) develop blending strategies, (2) determine feedstock characteristics that are most important for predicting conversion, (3) make correlations between chemical and physical characteristics and conversion performance of biomass, and (4) begin to select the most critical techniques necessary to measure quality in the logistical process.

Extended Abstract: File Not Uploaded
See more of this Session: Poster Session: Sustainability and Sustainable Biorefineries
See more of this Group/Topical: Sustainable Engineering Forum