432805 Theory-Guided Screening of Binary Alloy Thin Films for Electrochemical Reduction of Carbon Dioxide

Tuesday, November 10, 2015: 9:10 AM
355D (Salt Palace Convention Center)
Toru Hatsukade1, Christopher Hahn1,2, David N. Abram1, Heine A. Hansen3, Chuan Shi1, Mohammadreza Karamad4, Etosha R. Cave5, Jeremy T. Feaster1, Jens K. Norskov1,2 and Thomas F. Jaramillo1,2, (1)Department of Chemical Engineering, Stanford University, Stanford, CA, (2)SUNCAT Center of Interface Science and Catalysis, SLAC National Accelerator Laboratory, Menlo Park, CA, (3)Energy Conversion and Storage, Technical University of Denmark, Lyngby, Denmark, (4)SUNCAT Center for Interface Science and Catalysis, Department of Chemical Engineering, Stanford University, Stanford, CA, (5)Department of Mechanical Engineering, Stanford University, Stanford, CA

Electrochemical reduction of CO2 is an interesting pathway towards sustainability, as it enables the use of CO2 as a feedstock for the production of renewable fuels and chemicals, provided that the energy is supplied from renewable energy sources. There have been numerous reports on different catalyst systems that enable efficient and selective production of two-electron reduction products. On the other hand, only Cu has displayed any propensity as a catalyst to electrochemically reduce CO2 into longer chain hydrocarbons, carboxylates, and alcohols, while requiring large overpotential and showing poor product selectivity. Recent theoretical work indicates that scaling relations associated with reaction adsorbate binding energies could be limiting the CO2 reduction activity of transition metal catalysts for the production of further reduced products.[1] These studies suggest that alloying can improve the activity and selectivity of a CO2 reduction catalyst by decoupling the binding energies of specific reaction intermediates.

Here, we report on our effort on the screening of CO2 reduction activity of a targeted library of binary alloy thin films synthesized through physical vapor deposition. Activity trends associated with the adsorbate binding energies of the alloy components are discussed. The focus will be put on synergistic effects observed for a few of the alloys, namely AuPd, PtIn, and PdIn alloys. These alloys demonstrate how alloying can engender new electrocatalytic properties beyond the sum of the components.

 [1] Peterson, A.A.; Nørskov, J.K., "Activity Descriptors for CO2 Electroreduction to Methane on Transition-Metal Catalysts," J. Phys. Chem. Lett., 2012, 3, 251-258.


Extended Abstract: File Not Uploaded
See more of this Session: Electrocatalysis and Photoelectrocatalysis V
See more of this Group/Topical: Catalysis and Reaction Engineering Division