427096 Fabrication of High-Quality Graphene Oxide Nanoscrolls and Application in Supercapacitor

Monday, November 9, 2015: 9:50 AM
253A (Salt Palace Convention Center)
Tianju Fan1, Wenjin Zeng1, Qiaoli Niu1, Songzhao Tong1, Kaiyu Cai1, Yidong Liu2, Wei Huang1, Yong G. Min1 and Arthur J. Epstein3, (1)Institute of Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing, China, (2)School of Advanced Materials, Peking University Shenzhen Graduate School, Shenzhen, China, (3)Physics, The Ohio State University, Columbus, OH

We reported a simple and effective way of fabricating one-dimensional (1D) graphene oxide nanoscrolls (GONS) from graphene oxide (GO) sheets through shock cooling by liquid nitrogen. The corresponding mechanism of rolling was proposed. One possibility is the formation of ice crystals during the shock cooling process in liquid nitrogen to be the driving force. The other might be due to the uneven stress of the sheets inside or outside ice during the lyophilization. After reducing, graphene nanoscrolls (GNS) exhibited good structural stability, high specific surface area, and high specific capacitance. The capacitance properties were investigated by cyclic voltammetry, galvanostatic charge-discharge, and electrical impedance spectroscopy. A specific capacity of 156 F/g for the GNS at the current density of 1.0 A/g was obtained comparing with the specific capacity of 108 F/g for graphene sheets. Those results indicated that GNS-based rolling structure could be a kind of promising electrode material for supercapacitors and batteries.

Extended Abstract: File Not Uploaded