423053 Evolution of Nanoscale Morphology in Single and Binary Iron-Based Oxide Microparticles in Chemical Looping

Thursday, November 12, 2015: 12:30 PM
254C (Salt Palace Convention Center)
Lang Qin1, Zhuo Cheng2 and L.-S. Fan1, (1)William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, (2)Chemical and Biomolecular Engineering, Ohio State University, Columbus, OH

Iron oxide composites are enabling materials in energy conversion systems including chemical looping. Their synthesis into electronic materials and operation in chemical looping technologies are based on reduction and oxidation reactions that involve exchanges of ions and electrons. Knowledge on the evolution of the nanoscale morphology of the Fe-Ti materials during the oxidation and reduction is thus of considerable importance. It is also of interest to the fundamental understanding of the ion diffusion mechanism in the reaction processes. In this study, Fe-based composite microparticles undergoing cycles of oxidation and reduction are examined at the nano- and micro- scale, and the interfacial characteristics of the iron titanium oxides within the composites are probed. Structural transformations during redox processes involving pure Fe and FeTi microparticles are investigated. In Fe systems, nanowires and nanopores are observed to simultaneously form on the microparticle surface during oxidation. Nanobelts are observed to simultaneously form on the FeTi microparticle surface. Additionally, unlike Fe, microparticles that become dense on surface due to sintering effect, FeTi microparticles are transformed into porous particles after redox cycles. The atomistic thermodynamics methods and density functional theory calculations are carried out to investigate the ionic diffusion and vacancy formation during the oxidation and reduction process. A number of surface configurations are considered, and the Ti–Ti–O– terminated surface is computed to the most stable surface structure at experimental conditions. It was found that in oxidation processes, surface Ti atoms are more favorable for oxygen adsorption and dissociation than Fe atoms. The energy barrier of Fe ion diffusion towards the surface, on the other hand, is lower than Ti ion diffusion, which contributes to the iron oxide-dominant nanobelt formation. The volume change due to high temperature associated with the solid state transformation at the Fe2O3/FeTiO3 interface produces compressive stresses, which stimulate Fe2O3 nanobelt growth to accompany the interface reaction. Also, as the vacancy formation energy of FeTiO3 is lower than Fe2O3 in the reduction process, it indicates that it is easier for a FeTiO3 surface to form vacancy defects, thereby enhancing the porous surface structure formation and O2 diffusivity. The good agreements between experiments and DFT calculations further substantiate nanostructure formation mechanism in redox reactions of iron titanium composite materials.

Extended Abstract: File Uploaded