370128 Adaptive Hydrophobic and Hydrophilic Interactions of Mussel Foot Proteins with Organic Thin Films

Thursday, November 20, 2014: 9:55 AM
208 (Hilton Atlanta)
Jing Yu1,2, Michael Rapp2, Wei Wei3, J. Herbert Waite4 and Jacob N. Israelachvili2, (1)Institute of Molecular Engineering, University of Chicago, Chicago, IL, (2)Chemical Engineering, University of California, Santa Barbara, Santa Barbara, CA, (3)Materials Research Laboratory, University of California, Santa Barbara, Santa Barbara, CA, (4)Department of Molecular, Cell, and Developmental Biology, University of California, Santa Barbara (UCSB), Santa Barbara, CA

The adhesion of mussel foot proteins (Mfps) to a variety of specially engineered mineral and metal oxide surfaces has previously been investigated extensively, but the relevance of these studies to adhesion in biological environments remains unknown. Most solid surfaces exposed to seawater or physiological fluids become fouled by organic conditioning films and biofilms within minutes. Understanding the binding mechanisms of Mfps to organic films with known chemical and physical properties therefore is of considerable theoretical and practical interest. Using self-assembled monolayers (SAMs) on atomically smooth gold substrates and the surface forces apparatus, we explored the force–distance profiles and adhesion energies of three different Mfps, Mfp-1, Mfp-3, and Mfp-5, on (i) hydrophobic methyl (CH3)- and (ii) hydrophilic alcohol (OH)-terminated SAM surfaces between pH 3 and pH 7.5. At acidic pH, all three Mfps adhered strongly to the CH3-terminated SAM surfaces via hydrophobic interactions (range of adhesive interaction energy = −4 to −9 mJ/m2) but only weakly to the OH-terminated SAM surfaces through H- bonding (adhesive interaction energy ≤ −0.5 mJ/m2). 3, 4-Dihydroxyphenylalanine (Dopa) residues in Mfps mediate binding to both SAM surface types but do so through different interactions: typical bidentate H-bonding by Dopa is frustrated by the longer spacing of OH-SAMs; in contrast, on CH3-SAMs, Dopa in synergy with other nonpolar residues partitions to the hydrophobic surface. Asymmetry in the distribution of hydrophobic residues in intrinsically unstructured proteins, the distortion of bond geometry between H-bonding surfaces, and the manipulation of physisorbed binding lifetimes represent important concepts for the design of adhesive and nonfouling surfaces.

Extended Abstract: File Not Uploaded
See more of this Session: Biomolecules at Interfaces I
See more of this Group/Topical: Engineering Sciences and Fundamentals