291153 The Improvement of Photosystem I Deposition Using a Spin-Coating Method

Monday, October 29, 2012
Hall B (Convention Center )
Karla M. Dumeng, Chemical Engineering, University of Puerto Rico - Mayaguez, Isabela, PR

Photosystem I (PSI) is a photocatalytic protein complex that drives photosynthesis in green plants and cyanobacteria. PSI extracted from plants and deposited onto a surface can covert solar energy to electrical energy.  Previous methods, such as vacuum-assisted assembly, face challenges when depositing PSI onto an active electrode, including lengthy deposition time and controlling the coverage and uniformity of the PSI film. Here we deposit PSI, which is extracted from the spinach leaf, onto a gold substrate by spin-coating for the first time in order to optimize the coverage of the PSI layer. The spin-coating method consists of adding an aqueous solution of PSI onto a gold substrate and then rotating it to remove the water from the system, obtaining a thick film of PSI that can be rinsed down to a dense monolayer. Electrochemical experiments using a 3-electrode cell show that photocurrents of ~50-100 nA/cm2 are obtained for samples with thicknesses of ~40-80 Å. The spin-coating method provides improved uniform deposition of PSI, is an order of magnitude faster than vacuum-assisted assembly, and creates a consistent light-induced current. For future work, we will deposit thicker films of PSI with the aim of increasing the photocatalytic response of the system.

Extended Abstract: File Not Uploaded
See more of this Session: Student Poster Session: Fuels, Petrochemicals, and Energy
See more of this Group/Topical: Student Poster Sessions