288114 Fuel Processing: Renaissance of the Second Decade (Keynote)

Tuesday, October 30, 2012: 3:15 PM
302 (Convention Center )
Brant. A. Peppley, Rajesh D. Parmar and Kunal Karan, Queen's - RMC Fuel Cell Research Centre, Queen's University, Kingston, ON, Canada

The early development of fuel processing technologies for fuel cell systems was, to a great extent, driven by fuel cell automobile programs. At the time an on-board reformer was believed to be the best option for fuel cell automobile commercialisation. Regrettably, the belief that we simply needed to adapt design concepts from large-scale industrial steam reforming hampered our progress at the time. Autothermal (ATR) and Partial Oxidation (POX) reformers provided a partial solution to the heat transfer problems but resulted in a severe penalty in overall system efficiency. The idea of on-board reforming for automobiles was all but completely abandoned in the late-1990s and, the level of effort on fuel processing for fuel cell systems decreased drastically. A significant amount of progress, however, had been made prior to the reduction in support for fuel processor research and reformer designs based on structured catalysts and catalyst coated micro-structured heat transfer components had made significant progress. Recent developments in stationary and portable fuel cell system products using hydrocarbons, alcohol and oxygenated fuels including diesel fuel, dimethyl ether, ethanol, methanol and propane as well as natural gas have created a renewed interest in developing improved fuel processors. Although these types of systems do not necessarily require fast start up and load following, significant improvements in overall efficiency, reductions in pressure drop through the bed and improved dynamic response can be and have been achieved. A better understanding of the coupling of heat transfer, catalytic kinetics and mass transfer limitations in conjunction with the discovery of new classes of catalysts that meet the demanding requirements of hydrocarbon fuel processing has led to some highly innovative new directions in fuel processor design. These developments will be reviewed and new directions in fuel processor design and development will be presented.

Extended Abstract: File Uploaded