287605 Protonic Membrane Reactors: Converting Hydrocarbon Resources and CO2 to Fuels

Wednesday, October 31, 2012: 4:31 PM
302 (Convention Center )
Eric D. Wachsman, University of Maryland Energy Research Center, University of Maryland, College Park, MD

Membrane reactor technology holds the promise to circumvent thermodynamic equilibrium limitations by in-situ removal of product species, resulting in improved chemical yields.  Recent advances in mixed-conducting oxide-membrane technology present the possibility for a dramatic reduction in the cost of converting petroleum, coal and biomass derived feed stocks to hydrogen and other “value added” hydrocarbons.  We have developed novel membrane reactor technology, based on high temperature proton conductors, that can convert a wide range of hydrocarbons to pure H2, and syngas for subsequent Fisher Tropsch synthesis of liquid fuels and chemical feed stocks. By simultaneous H2 permeation and catalysis, we have demonstrated the ability to increase water gas shift yields >70% over thermodynamic limitations. Similarly we have demonstrated increases in steam reforming yields, and the ability to reform CH4 with CO2. The later creates the opportunity for a revolutionary method for carbon sequestration.

Extended Abstract: File Not Uploaded