282106 Rapid Fabrication of Binder-Free Multilayered Electrodes of Polyaniline Nanofibers and Multi-Walled Carbon Nanotubes

Tuesday, October 30, 2012: 3:15 PM
307 (Convention Center )
MD Nasim Hyder1, Yang Shao-Horn2 and Paula T. Hammond1, (1)Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, (2)Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA

Next generations electrochemical energy storage devices require high-power, high-energy density, simultaneously. To achieve this goal, it is essential to identify novel electrode materials based on nanoparticles, nanotubes or nanofibers with decreased transport length of ions/electrons and high surface area. Nanomaterials such as carbon nanotubes and conducting polymeric nanofibers /nanoparticles with their exotic properties can significantly increase power (W/kg) and energy density (Wh/kg) in addition, to their longer life cycles and charging-discharging efficiency. We assembled free-standing multilayered thick (10 to 60 microns) electrodes of conducting polyaniline (PANi) and multiwalled carbon nanotubes (MWNTs) that are robust, binder-free using rapid spray and vacuum-assisted layer by layer techniques. The electrode microstructure reveals porous nanostructure with high surface area; Preliminary results for these highly conductive electrodes (4.4 S/cm) show high pseudocapacitance of 210 F/cm3 and are stable over 1000 cycles. We will present our findings on the optimization of the free standing asymmetric electrode morphology and electrochemical performance in aqueous and organic electrolytes.

Extended Abstract: File Not Uploaded
See more of this Session: Nanomaterials for Energy Storage III
See more of this Group/Topical: Topical 5: Nanomaterials for Energy Applications