280721 Streamlined RTIL Processing for Facile Nanocomposite Synthesis

Tuesday, October 30, 2012
Hall B (Convention Center )
James A. Throckmorton, Department of Chemical and Biological Engineering, Drexel University, Philadelphia, PA and Giuseppe R. Palmese, Chemical and Biological Engineering, Drexel University, Philadelphia, PA

Thermosetting materials and thermoset composites are widely used for structural applications, adhesives, insulation materials, electronic encapsulants, and coatings in a wide array of industries including wind energy, aerospace, sporting goods, and automotive.  Recent research has shown that properties of these materials, including CTE, modulus, fracture toughness, electrical conductivity, thermal conductivity, and volatile perfusion, can be enhanced by the addition of nano-scale fillers with various chemistries and morphologies. These nanocomposites modify polymers and conventional composites by providing a moldable, flowable, polymer-like composite with advantageous properties taken from embedded materials with desirable properties over small length scales.

Achieving effective macro-scale properties from these nanofillers requires good solvent chemistry and processing for nanoparticles dispersion, effective choice of nanoparticle material and geometry for the desired property improvements, and strong interfaces between the embedded particles and the polymer matrix. Our recent work has demonstrated that well-chosen ionic liquids can simultaneously disperse nanoparticles within an epoxy matrix and initiate epoxy cure reaction. This results in materials with potentially unique interphase properties resulting from interactions among the nanoparticle surface, ionic liquid, and thermoset matrix.

This study explores the structure and properties of nanocomposites made with this unique processing method to embed graphite nanoplatelets, silica nanoparticles, and smectite clays into thermosetting resins. Experimentally and conceptually, various methods of measuring dispersion for differing particle geometries, the relationship between nano-scale dispersion and macroscopic properties, and the effect of a percolated nanofiller network are explored.


Extended Abstract: File Not Uploaded
See more of this Session: Poster Session: Nanoscale Science and Engineering
See more of this Group/Topical: Nanoscale Science and Engineering Forum