Tuesday, October 18, 2011: 4:05 PM
211 D (Minneapolis Convention Center)
Biochemical reactors are essential unit operations in a wide variety of biotechnological process.As compared to conventional chemical reactors, bioreactors present unique modeling and control challenges due to complexity of the underlying biochemical reactions. The biological processes are inherently very nonlinear and have frequently changing optimum operating conditions. Therefore,optimization of biochemical reactor process requires a mathematical model that describes and predicts the process behavior. The simulation and optimization of the present biochemical reactor which used substrate (glucose) was studied. Multilayer modeling technique was applied.The first layer is hybrid model was consist the framework of the dynamic mass balance equations supplemented with the sub models of kinetic reaction.The optimum problem represents the second modeling layer. To overcome the limitation of the experimental data, the accurate simulated model was used as a powerful tool to generate data which construct the objective functions of the optimization problem .The objective of the optimization technique was to maximize the conversion and minimize the cycle time of reaction. The decision (effective) variables were the dilution rate and the inlet concentration of the substrate. Optimization search can generate several new designs and sets of operating conditions.This can reduce the number of experimental runs and the cost consumed for design and operation.Also it limits the best range of the operating conditions which improve the efficiency the reactor. The yield of the biomass increased by 43% at the optimum conditions. The multiobjective stochastic search by genetic algorithm with adaptive operators was the best for the present nonlinear interacted biochemical reactor.
See more of this Session: Sustainable Chemicals II
See more of this Group/Topical: Sustainable Engineering Forum
See more of this Group/Topical: Sustainable Engineering Forum