Wednesday, October 19, 2011: 1:30 PM
200 C (Minneapolis Convention Center)
Alternative energy and climate change are among the largest concerns facing scientists and engineers at the start of the twenty-first century. The focus of this research is the design of a system that can efficiently capture atmospheric carbon dioxide and reduce it to CO, a precursor for fuel synthesis. Rather than traditional solvents such as water, sulfuric acid, or acetonitrile, room temperature ionic liquids (RTIL’s) will be employed as the solvent for CO2 capture and reduction. RTIL’s have many favorable properties such as extended electrochemical windows, high thermal stability, high electrical conductivity, and a 100+ fold increase in carbon dioxide solubility compared to water. Additionally, the absence of bulk water can increase the efficiency of CO production by eliminating the hydrogen and oxygen evolution reactions. Cyclic voltammetry has shown the catalytic reduction of CO2 at many transition metal cathode surfaces in imidazolium based ionic liquids such as EMIM BF4. Sum Frequency Generation (SFG) spectroscopy was used in identify reduced species and intermediates on the Pt surface. A CO2 conversion flow cell in series with a GC was used to evaluate the steady state performance of CO2 reduction on various metal cathodes.
See more of this Session: Catalysis for CO2 Conversion
See more of this Group/Topical: Catalysis and Reaction Engineering Division
See more of this Group/Topical: Catalysis and Reaction Engineering Division