We are using synthetic biology to create inexpensive, effective, anti-malarial drugs. Currently, malaria infects 300–500 million people and causes 1-2 million deaths each year, primarily children in Africa and Asia. One of the principal obstacles to addressing this global health threat is a lack of effective, affordable drugs. The chloroquine-based drugs that were used widely in the past have lost effectiveness because the Plasmodium parasite which causes malaria has become resistant to them. The faster-acting, more effective artemisinin-based drugs — as currently produced from plant sources — are too expensive for large-scale use in the countries where they are needed most. The development of this technology will eventually reduce the cost of artemisinin-based combination therapies significantly below their current price. To reduce the cost of these drugs and make them more widely available, we have used synthetic biology to engineer microorganisms to produce artemisinin from renewable resources. I will describe the process by which we engineered production of this important drug and the prospects for translating this research to people most in need of the drug.