In the presented work we have performed atomistic and coarse-grained molecular dynamic simulations to evaluate the potential of confined nanoparticle solutions for nanotribological applications. The model system considered includes alkanethiol-capped gold nanoparticles and n-hexane as solvent. We have observed a disruption of layering tendency of the symmetric solvent molecules by the presence of nanoparticles that have a very different size. This disruption of the layering phenomenon is studied as functions of nanoparticle concentration and film thickness. The resultant less layered or non-layered thin lubricant films can be expected to provide smooth lubrication and important tribological advantages including reduced friction, wear, and costs.