To enable the study of the behavior of these micelles in porous media, a series of silicon-and-glass microfluidic cells capable of withstanding pressure drops up to 400 psi were constructed and quantified with particle-imaging velocimetry (PIV).
In-situ concentration studies were performed by tagging the micelles with hydrophobic dyes. Accumulation of surfactant in the porous media micromodels was examined as a function of flowrate and surfactant species, and two different accumulation processes are described.
Recent work in this field has examined the shear-banding and phase separation in conventional rheological geometry. However, this work has the advantage of being able to measure surfactant accumulation in real-time in a geometry that more closely mimics the environment in which it is typically used. Furthermore, the role of hydrophobically-modified polymers to control ordering is examined.